Jadi dalam pembelajaran matematika dalam Blog kali ini kita akan mempelajari tentang Rumus Pythagoras.
Pada sesi akhir, kita akan mencoba menerapkan rumus Pythagoras dimana kita akan menjawab beberapa latihan soalnya.
Adakah yang tahu untuk apa Rumus Pythagoras itu ?
Ya, rumus pythagoras dipakai untuk mengetahui salah satu panjang segi suatu segitiga.
Sejarah Teorema Pythagoras
Seorang filsuf dan ilmuwan matematika berkebangsaan Yunani pada tahun 570 – 495 SM sudah memperoleh sebuah inovasi "Ketika sebuah segitiga memiliki sudut 90 ° dan tiga segi segitiga tersebut dibuat dari tiga, maka kotak paling besar terbesar mempunyai luas yang serupa persis dengan dua kotak lainnya yang disatukan seperti yang ditunjukkan oleh gambar berikut ini :
(Sumber :mathsisfun . com) |
Inilah yang dinamakan dengan Teorema Pythagoras dimana :
- c ialah sisi miring
- a ialah segi tegak
- b ialah segi mendatar
Dalil Pythagoras
Dari klarifikasi diatas dapat kita tarik kesimpulan bahwa Dalil Pythagoras menyatakan :Sisi terpanjang dalam segitiga siku – siku sama dengan kuadrat sisi – segi yang lain.
Rumus Pythagoras
Apabila terdapat segitiga siku-siku dimana : c ialah sisi miring, a yakni sisi tegak, b merupakan sisi mendatar, maka kita dapat menulis rumus pythagoras sebagai berikut :
c2 = a2 + b2
a2 = c2 - b2
b2 = c2 - a2
a2 = c2 - b2
b2 = c2 - a2
Contoh Soal Rumus Phytagoras
Soal No.1Jika dikenali sisi tegak (AB) sebuah segitiga siku-siku adalah 15 cm dan segi mendatarnya (BC) 8 cm. Hitunglah sisi miring (AC) segitiga siku-siku tersebut ?
Pembahasan
AB = 15 cm
BC = 8 cm
AC2 = AB2 + BC2
AC2 = 152 + 82
AC2 = 225 + 64
AC2 = 289
AC = √289
AC = 17
Makara sisi miring segitiga tersebut yaitu 17 cm
BC = 8 cm
AC2 = AB2 + BC2
AC2 = 152 + 82
AC2 = 225 + 64
AC2 = 289
AC = √289
AC = 17
Makara sisi miring segitiga tersebut yaitu 17 cm
Soal No.2
Sebuah segitiga siku-siku memiliki segi miring sebesar 13 cm dan panjang sisi mendatar yakni 12 cm. Hitunglah sisi tegak segitiga tersebut ?
Pembahasan
c (segi miring) = 13 cm
b (sisi mendatar) = 12 cm
a2 = c2 - b2
a2 = 132 - 122
a2 = 169 - 144
a2 = 25
a = √25
a = 5 cm
Jadi sisi tegaknya adalah 5 cm
Sumber https://www.kontensekolah.com/
b (sisi mendatar) = 12 cm
a2 = c2 - b2
a2 = 132 - 122
a2 = 169 - 144
a2 = 25
a = √25
a = 5 cm
Jadi sisi tegaknya adalah 5 cm
Posting Komentar
Posting Komentar