Istilah "Turunan" sering kali juga diketahui dengan perumpamaan "Differensiasi" dapat diaplikasikan dalam banyak sekali bidang mirip : bidang ekonomi, bidang astronomi, bidang geografi dsb.
Pada tutorial turunan sebelumnya, kita telah mempelajari acuan soal yang bekerjasama dengan turunan. Pembahasan soal-soal turunan tersebut mampu anda jumpai dalam panduan berikut ini :
- Contoh Soal Turunan Fungsi Perkalian dan Pembagian
- Contoh Soal Turunan Fungsi Pangkat Beserta Pembahasannya
Soal - Soal Latihan Turunan
Soal No.1Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 15x
b) f(x) = 4
c) f(x) = 12
Pembahasan
a) f(x) = 15x
⇔f(x) = 15x1
⇔f'(x) = 15x1−1
⇔f'(x) = 15x0
⇔f'(x) = 15
b) f(x) = 4
⇔f(x) = 4x0
⇔f'(x) = 0 ⋅ 4x0−1
⇔f'(x) = 0
c) f(x) = 12
⇔f(x) = 12x0
⇔f'(x) = 0 ⋅ 12x0−1
⇔f'(x) = 0
⇔f(x) = 15x1
⇔f'(x) = 15x1−1
⇔f'(x) = 15x0
⇔f'(x) = 15
b) f(x) = 4
⇔f(x) = 4x0
⇔f'(x) = 0 ⋅ 4x0−1
⇔f'(x) = 0
c) f(x) = 12
⇔f(x) = 12x0
⇔f'(x) = 0 ⋅ 12x0−1
⇔f'(x) = 0
Soal No.2
Tentukanlah turunan pertama dari fungsi berikut :
a. f(x) = 8x
b. f(x) = x3
c. f(x) = -4x5
d. f(x) = 2x4
e. f(x) = 4x3 - 3x2 + 8x -5
Pembahasan
a. f(x) = 8x
⇔ f'(x) = 1.8x1-1
⇔ f'(x) = 1.8x0
⇔ f'(x) = 1.1
⇔ f'(x) = 1
b. f(x) = x3
⇔ f'(x) = 3.x3-1
⇔ f'(x) = 3.x2
⇔ f'(x) = 3x2
c. f(x) = -4x5
⇔ f'(x) = -4.5x5-1
⇔ f'(x) = -4.5x4
⇔ f'(x) = -20x4
d. f(x) = 2x4
⇔ f'(x) = 2.4x4-1
⇔ f'(x) = 2.4x3
⇔ f'(x) = 8x3
e. f(x) = 4x3 - 3x2 + 8x -5
⇔ f'(x) = 4.3x3-1 - 3.2x2-1 + 8.1x1-1 - 5.1x1-1
⇔ f'(x) = 4.3x2 - 3.2x1 + 8.1x0 - 5.1x0
⇔ f'(x) = 12x2 - 6x1 + 8x0 - 5x0
⇔ f'(x) = 12x2 - 6x + 8 - 0
⇔ f'(x) = 12x2 - 6x + 8
⇔ f'(x) = 1.8x1-1
⇔ f'(x) = 1.8x0
⇔ f'(x) = 1.1
⇔ f'(x) = 1
b. f(x) = x3
⇔ f'(x) = 3.x3-1
⇔ f'(x) = 3.x2
⇔ f'(x) = 3x2
c. f(x) = -4x5
⇔ f'(x) = -4.5x5-1
⇔ f'(x) = -4.5x4
⇔ f'(x) = -20x4
d. f(x) = 2x4
⇔ f'(x) = 2.4x4-1
⇔ f'(x) = 2.4x3
⇔ f'(x) = 8x3
e. f(x) = 4x3 - 3x2 + 8x -5
⇔ f'(x) = 4.3x3-1 - 3.2x2-1 + 8.1x1-1 - 5.1x1-1
⇔ f'(x) = 4.3x2 - 3.2x1 + 8.1x0 - 5.1x0
⇔ f'(x) = 12x2 - 6x1 + 8x0 - 5x0
⇔ f'(x) = 12x2 - 6x + 8 - 0
⇔ f'(x) = 12x2 - 6x + 8
Soal No.3
Carilah turunan pertama dari fungsi berikut:
f(x) = 4(2x2 + 2x)
Pembahasan
f(x) = 4(2x2 + 2x)
f(x) = 8x2 + 8x
⇔ f'(x) = 8.2x2-1 + 8.1x1-1
⇔ f'(x) = 8.2x1 + 8.1x0
⇔ f'(x) = 16x + 8
f(x) = 8x2 + 8x
⇔ f'(x) = 8.2x2-1 + 8.1x1-1
⇔ f'(x) = 8.2x1 + 8.1x0
⇔ f'(x) = 16x + 8
Soal No.4
Carilah Turunan Kedua (f"(x)) dari fungsi f(x) = 4x3 - 3x2 + 8x - 5
Pembahasan
f(x) = 4x3 - 3x2 + 8x - 5
f'(x) = 4.3x(3-1) - 3.2x(2-1) + 8 - 0
f'(x) = 12x2 -6x + 8
f"(x) = 12.2x(2-1) - 6 + 0
f"(x) = 24x - 6
f'(x) = 4.3x(3-1) - 3.2x(2-1) + 8 - 0
f'(x) = 12x2 -6x + 8
f"(x) = 12.2x(2-1) - 6 + 0
f"(x) = 24x - 6
Soal No.5
Tentukanlah turunan pertama f'(x) dari fungsi berikut ini:
a. f(x) =
2 x
b. f(x) =
1 4x6
Pembahasan
a. f(x) =
f'(x) = 2.(-1)x(-1-1)
f'(x) = -2x-2
f'(x) = -
b. f(x) =
f'(x) =
f'(x) = -
f'(x) = -
2 x
⇔ f(x) = 2x-1f'(x) = 2.(-1)x(-1-1)
f'(x) = -2x-2
f'(x) = -
2 x2
b. f(x) =
1 4x6
⇔ f(x) = 1 4
x-6f'(x) =
1 4
.(-6) . x(-6-1)f'(x) = -
3 2
x-7f'(x) = -
3 2x7
Soal No.6
Tentukanlah turunan pertama dari fungsi berikut ini :
a. f(x) = 3x1/2
b. f(x) = 6x3/2
Pembahasan
a. f(x) = 3x1/2
⇔ f'(x) =
⇔ f'(x) =
b. f(x) = 6x3/2
⇔ f'(x) =
⇔ f'(x) = 9x1/2
⇔ f'(x) =
1 2
. 3x(1/2 - 1)⇔ f'(x) =
3 2
. x-1/2b. f(x) = 6x3/2
⇔ f'(x) =
3 2
. 6x(3/2 - 1)⇔ f'(x) = 9x1/2
Soal No.7
Carilah turunan f'(x) untuk f(x) = (x2 + 2x + 3)(4x + 5)
Pembahasan
Misal :
u = (x2 + 2x + 3)
v = (4x + 5)
Sehingga ditemukan u' = 2x + 2 v' = 4
Kemudian kita masukkan ke dalam rumus f'(x) = u'v + uv' sehingga turunannya menjadi :
f'(x) = (2x + 2)(4x + 5) + (x2 + 2x + 3)(4)
f'(x) = 8x2 + 10x + 8x + 10 + 4x2 + 8x + 12
f'(x) = 8x2 + 4x2 + 10x + 8x + 8x + 10 + 12
f'(x) = 12x2 + 26x + 22
u = (x2 + 2x + 3)
v = (4x + 5)
Sehingga ditemukan u' = 2x + 2 v' = 4
Kemudian kita masukkan ke dalam rumus f'(x) = u'v + uv' sehingga turunannya menjadi :
f'(x) = (2x + 2)(4x + 5) + (x2 + 2x + 3)(4)
f'(x) = 8x2 + 10x + 8x + 10 + 4x2 + 8x + 12
f'(x) = 8x2 + 4x2 + 10x + 8x + 8x + 10 + 12
f'(x) = 12x2 + 26x + 22
Soal No.8
Diketahui :
f(x) =
x2 + 3 2x + 1
Jika f ‘(x) menyatakan turunan pertama f(x), maka f(0) + 2f ‘ (0) =..?
Pembahasan
Untuk x = 0 maka nilai f(x) yakni:
f(x) =
f(0) =
Sedangkan untuk menentukan turunan terhadap fungsi f(x) yang berbentuk hasil bagi, kita gunakan rumus :
f(x) =
f(x) =
Dengan demikian, kita misalkan :
u = x2 + 3 ⇔ u' = 2x
v = 2x + 1 ⇔ v' = 2
Sehingga turunannya ialah:
f(x) =
f'(x) =
f'(x) =
f'(x) =
Untuk nilai x = 0, maka di peroleh:
f'(0) =
Sehingga f(0) + 2f'(0) = 3 + 2(−6) = − 9
f(x) =
x2 + 3 2x + 1
f(0) =
02 + 3 2(0) + 1
= 3 Sedangkan untuk menentukan turunan terhadap fungsi f(x) yang berbentuk hasil bagi, kita gunakan rumus :
f(x) =
u v
f(x) =
u'v - uv' v2
Dengan demikian, kita misalkan :
u = x2 + 3 ⇔ u' = 2x
v = 2x + 1 ⇔ v' = 2
Sehingga turunannya ialah:
f(x) =
x2 + 3 2x + 1
f'(x) =
(2x)(2x+1) - (x2+3)(2) (2x + 1)2
f'(x) =
4x2 + 2x - 2x2 - 6 (2x + 1)2
f'(x) =
2x2 + 2x - 6 (2x + 1)2
Untuk nilai x = 0, maka di peroleh:
f'(0) =
2.02 + 2.0 - 6 (2.0 + 1)2
= -6 Sehingga f(0) + 2f'(0) = 3 + 2(−6) = − 9
Soal No.9
Turunan dari fungsi f(x) =
x -2 x2 + 3
adalah .....A.
x2 - 4x + 3 (x2 + 3)2
B.
2x2 - 3x + 1 (x2 + 3)2
C.
-x2 - 4x + 3 (x2 + 3)2
D.
-x2 + 4x + 3 (x2 + 3)2
Pembahasan
f(x) =
f(x) =
Dengan demikian :
u = x - 2 ⇔ u' = 1
v = x2 + 3 ⇔ v' = 2x
Sehingga turunannya adalah:
f(x) =
f'(x) =
f'(x) =
f'(x) =
Jawab : D
Sumber https://www.kontensekolah.com/
u v
f(x) =
u'v - uv' v2
Dengan demikian :
u = x - 2 ⇔ u' = 1
v = x2 + 3 ⇔ v' = 2x
Sehingga turunannya adalah:
f(x) =
x -2 x2 + 3
f'(x) =
(1)(x2 + 3) - ((x - 2)2x) (x2 + 3)2
f'(x) =
x2 + 3 - 2x + 4x (x2 + 3)2
f'(x) =
-x2 + 4x + 3 (x2 + 3)2
Jawab : D
Posting Komentar
Posting Komentar